STRUTTURE DATI ASTRATTE LINEARI

Esercizi sulla struttura data astratta LISTA o SEQUENZA

Riguardo la struttura dati **LISTA o SEQUENZA** secondo le specifiche dell'**ADT** rispondere alle seguenti domande:

Esercizio 1) Scrivere la sequenza ordinata <u>minima</u> di operazioni da effettuare per ottenere la seguente lista

$$S_1 = [2, 1, -3, 8, 11]$$

considerando i vincoli sotto indicati (da utilizzare uno in modo indipendente dall'altro):

- a1) usare almeno 1 volta l'inserimento in testa, in fondo ed in posizione di un nodo
- a2) usare almeno 2 volte l'inserimento in testa ed in fondo di un nodo
- a3) usare almeno 2 volte l'inserimento in posizione di un nodo

Esercizio 2) Eseguire il passaggio dalle sequenze **S**₁ alle sequenze **S**₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$S_1 = [1, 4, 7, -2] ----> S_2 = [1, -2, 7, 11]$$

 $S_1 = [1, 2, 3] ----> S_2 = [3, 2, 1]$
 $S_1 = [-11, 8, 5] ----> S_2 = [8, -11, 5]$

Esercizio 3) Eseguire sulla sequenza assegnata

$$S_{inizio} = [-2, 44, 0, -3, 7, 11]$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che S_1 , S_2 , S_3 ,..., S_7 indicano le sequenze via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la sequenza finale ottenuta (indicata con S_{fine}).

- 1. InsFondo (Sinizio, 8)
- 2. InsTesta (S₁, **4**)
- 3. InsPos (S₂, **2**, **6**)
- 4. CancPos (S₃, **3**)
- 5. CancTesta (S₄)
- 6. CancFondo (S₅)
- 7. InsTesta (S₆, **8**)
- 8. CancPos (S₇, **4**)

Esercizio 4) Scrivere la sequenza ordinata minima di operazioni da effettuare per ottenere la seguente lista

$$S_1 = [9, 7, -11, 4, 2]$$

considerando i vincoli sotto indicati (da utilizzare uno in modo indipendente dall'altro):

- a1) usare almeno 1 volta l'inserimento in testa, in fondo ed in posizione di un nodo
- a2) usare almeno 2 volte l'inserimento in testa ed in fondo di un nodo
- a3) usare almeno 2 volte l'inserimento in posizione di un nodo

Esercizio 5) Eseguire il passaggio dalle sequenze **S**1 alle sequenze **S**2 assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$S_1 = [3, 9, 6, -4] ----> S_2 = [3, -8, 6, 12]$$

 $S_1 = [5, 7, 6] ----> S_2 = [6, 7, 5]$
 $S_1 = [8, 13, -7] ----> S_2 = [13, 8, -7]$

Esercizio 6) Eseguire sulla sequenza assegnata

$$S_{inizio} = [7, -5, 8, 9, 0, 6]$$

le operazioni sottoindicate una dopo l'altra tenendo presente che S₁, S₂, S₃,..., S₇ indicano le sequenze via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la sequenza finale ottenuta (indicata con S_{fine}).

- 1. InsFondo (Sinizio, 11)
- 2. InsTesta (S₁, -7)
- 3. InsPos (S₂, **2**, **8**)
- 4. CancPos (S₃, **2**)
- 5. CancTesta (S₄)
- 6. CancFondo (S₅)
- 7. InsTesta (S₆, **2**)
- 8. CancPos (S7, 3)

Esercizio 7) Scrivere la sequenza ordinata <u>minima</u> di operazioni da effettuare per ottenere la seguente lista

$$S_1 = [a, m, i, c, o]$$

considerando i vincoli sotto indicati (da utilizzare uno in modo indipendente dall'altro):

- a1) usare almeno 1 volta l'inserimento in testa, in fondo ed in posizione di un nodo
- a2) usare almeno 2 volte l'inserimento in testa ed in fondo di un nodo
- a3) usare almeno 2 volte l'inserimento in posizione di un nodo

Esercizio 8) Eseguire il passaggio dalle sequenze S₁ alle sequenze S₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$S_1 = [m, u, s, i, c, a] ----> S_2 = [n, a, u, t, i, c, a]$$

 $S_1 = [i, n, s, i, g, n, e] ----> S_2 = [i, n, f, a, n, t, e]$
 $S_1 = [n, a, p, o, l, i] ----> S_2 = [p, a, o, l, a]$

Esercizio 9) Eseguire sulla sequenza assegnata

$$S_{inizio} = [i, n, f, o, r, m, a, t, i, c, a]$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che S_1 , S_2 , S_3 ,..., S_7 indicano le sequenze via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la sequenza finale ottenuta (indicata con S_{fine}).

- 1. CancTesta (Sinizio)
- 2. CancPos (S₁, **2**)
- 3. InsPos (S₂, ℓ , **6**)
- 4. CancPos (S₃, **7**)
- 5. CancPos (S₄, **8**)
- 6. CancFondo (S₅)
- 7. InsTesta (S₇, **a**)

Esercizio 10) Scrivere la sequenza ordinata <u>minima</u> di operazioni da effettuare per ottenere la seguente lista

$$S_1 = [i, s, o, l, a]$$

considerando i vincoli sotto indicati (da utilizzare uno in modo indipendente dall'altro):

- a1) usare almeno 1 volta l'inserimento in testa, in fondo ed in posizione di un nodo
- a2) usare almeno 2 volte l'inserimento in testa ed in fondo di un nodo
- a3) usare almeno 2 volte l'inserimento in posizione di un nodo

Esercizio 11) Eseguire il passaggio dalle sequenze **S**₁ alle sequenze **S**₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$S_1 = [s, a, p, o, n, e] ----> S_2 = [c, a, n, n, o, n, e]$$

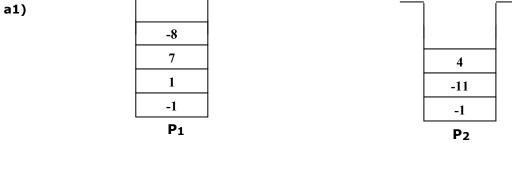
 $S_1 = [p, a, s, t, i, n, a] ----> S_2 = [c, a, s, s, i, n, o]$
 $S_1 = [m, i, l, a, n, o] ----> S_2 = [a, l, i, a, s]$

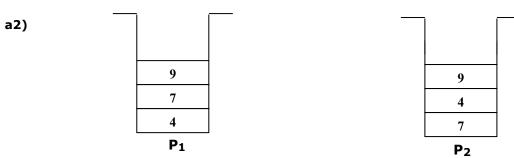
Esercizio 12) Eseguire sulla sequenza assegnata

$$S_{inizio} = [i, n, s, a, l, a, t, i, e, r, a]$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che S_1 , S_2 , S_3 ,..., S_7 indicano le sequenze via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la sequenza finale ottenuta (indicata con S_{fine}).

- 1. CancTesta (Sinizio)
- 2. CancPos (S₁, **2**)
- 3. InsPos (S₂, **m**, **2**)
- 4. CancPos (S₃, 9)
- 5. CancFondo (S₄)
- 6. CancTesta (S₅)
- 7. InsPos (S₇, **t, 5**)


Esercizi sulla struttura data astratta PILA o STACK


Riguardo la struttura dati **PILA o STACK** secondo le specifiche dell'**ADT** rispondere alle seguenti domande:

Esercizio 1) Scrivere la sequenza ordinata $\underline{\text{minima}}$ di operazioni da effettuare per creare la sequente pila P_1 :

$$P_1 = [3, 12, 8)$$

Esercizio 2) Scrivere la sequenza ordinata $\underline{\text{minima}}$ di operazioni da effettuare per ottenere le seguenti pile P_1 e P_2 assegnate nella seguente notazione alternativa:

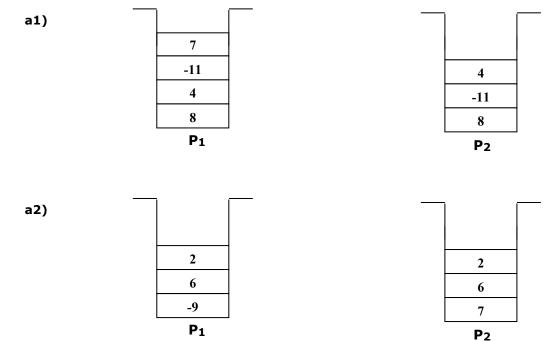
Esercizio 3) Eseguire il passaggio dalle pile P₁ alle pile P₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$P_1 = [-1, 8, 4) ----> P_2 = [-1, 8, 7)$$

 $P_1 = [-1, 8, 4) ----> P_2 = [8, -1, 4)$
 $P_1 = [-1, 8, 4) ----> P_2 = [0, 8, 4)$

Esercizio 4) Eseguire sulla pila assegnata

$$P_{\text{inizio}} = [-11, 22, 7, 2)$$


le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che P_1 , P_2 e P_3 indicano le pile via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la pila finale ottenuta (indicata con P_{fine}).

- 1. Push (Pinizio, 8)
- 2. Push (P₁, **33**)
- 3. Pop (P₂)
- 4. Push (P₃, **21**)

Esercizio 5) Scrivere la sequenza ordinata $\underline{\text{minima}}$ di operazioni da effettuare per creare la seguente pila P_1 :

$$P_1 = [-5, 8, 11)$$

Esercizio 6) Scrivere la sequenza ordinata $\underline{\text{minima}}$ di operazioni da effettuare per ottenere le sequenti pile P_1 e P_2 assegnate nella sequente notazione alternativa:

Esercizio 7) Eseguire il passaggio dalle pile **P**₁ alle pile **P**₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$P_1 = [-2, 13, 5) ----> P_2 = [-2, 13, 8)$$

 $P_1 = [4, 6, -9) ----> P_2 = [3, 6, -9)$
 $P_1 = [-3, 10, 7) ----> P_2 = [10, -3, 7)$

Esercizio 8) Eseguire sulla pila assegnata

$$P_{inizio} = [9, -7, 3, 10)$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che P_1 , P_2 e P_3 indicano le pile via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la pila finale ottenuta (indicata con P_{fine}).

- 1. Push (Pinizio, 9)
- 2. Push (P₁, **22**)
- 3. Pop (P₂)
- 4. Push (P₃, 7)

Esercizio 9) Scrivere la sequenza ordinata $\underline{\text{minima}}$ di operazioni da effettuare per ottenere le seguenti pile P_1 e P_2 assegnate nella seguente notazione alternativa:

Esercizio 10) Eseguire il passaggio dalle pile **P**₁ alle pile **P**₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$P_1 = [b, i, o) ----> P_2 = [b, i, s)$$

 $P_1 = [a, t, m) ----> P_2 = [t, a, m)$
 $P_1 = [v, i, a) ----> P_2 = [m, i, a)$

Esercizio 11) Eseguire sulla pila assegnata

$$P_{inizio} = [c, e, r, a)$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che **P1**, **P2**, **P3**, **P4** e **P5** indicano le pile via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la pila finale ottenuta (indicata con **P**fine).

- 1. Push (Pinizio, m)
- 2. Push (P₁, **a**)
- 3. Pop (P₂)
- 4. Push (P₃, i)
- 5. Push (P₄, **c**)
- 6. Push (P₅, **a**)

Esercizio 12) Scrivere la sequenza ordinata $\underline{\text{minima}}$ di operazioni da effettuare per ottenere le seguenti pile P_1 e P_2 assegnate nella seguente notazione alternativa:

Esercizio 13) Eseguire il passaggio dalle pile **P**₁ alle pile **P**₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$P_1 = [n, t, v) \longrightarrow P_2 = [v, t, n]$$

 $P_1 = [b, i, o) \longrightarrow P_2 = [r, i, o)$
 $P_1 = [v, i, a) \longrightarrow P_2 = [v, i, s)$

Esercizio 14) Eseguire sulla pila assegnata

$$P_{inizio} = [c, a, n, o)$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che P_1 , P_2 , P_3 , e P_4 indicano le pile via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la pila finale ottenuta (indicata con P_{fine}).

- 1. Push (Pinizio, t)
- 2. Push (P₁, **o**)
- 3. Pop (P₂)
- 4. Push (P₃, t)
- 5. Push (P₄, **o**)

Esercizi sulla struttura data astratta CODA o QUEUE

Riguardo la struttura dati **CODA o QUEUE** secondo le specifiche dell'**ADT** rispondere alle seguenti domande:

Esercizio 1) Scrivere la sequenza ordinata <u>minima</u> di operazioni da effettuare per creare la sequente coda **C**₁:

$$C_1 = \{11, 4, -7\}$$

Esercizio 2) Scrivere la sequenza ordinata <u>minima</u> di operazioni da effettuare per ottenere le seguenti code C₁ e C₂ assegnate nella seguente notazione alternativa:

Esercizio 3) Eseguire il passaggio dalle code C₁ alle code C₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$C_1 = \{8, 4, 2, 1\} ----> C_2 = \{7, 1, 4, 2\}$$

 $C_1 = \{4, 6, 3\} ----> C_2 = \{6, 3, 4\}$
 $C_1 = \{-1, 11, 22, 6\} ----> C_2 = \{4, -1, 11\}$

Esercizio 4) Eseguire sulla coda assegnata

$$C_{inizio} = \{-4, 2, 6, -8\}$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che C_1 , C_2 , C_3 e C_4 indicano le code via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la coda finale ottenuta (indicata con C_{fine}).

- 1. Inserisci (Cinizio, -11)
- 2. Inserisci (C₁, -4)
- 3. Estrai (C₂)
- 4. Inserisci (C₃, **7**)
- 5. Estrai (C₄)

Esercizio 5) Scrivere la sequenza ordinata <u>minima</u> di operazioni da effettuare per creare la sequente coda **C**₁:

$$C_1 = \{13, 9, -3\}$$

Esercizio 6) Scrivere la sequenza ordinata <u>minima</u> di operazioni da effettuare per ottenere le seguenti code C₁ e C₂ assegnate nella seguente notazione alternativa:

$$\begin{array}{c|c} C_1 & C_2 \\ \hline 8, 1, 4, 0 & 0, 8, 1, 4 \end{array}$$

Esercizio 7) Eseguire il passaggio dalle code C₁ alle code C₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$C_1 = \{5, 7, 4\} ----> C_2 = \{7, 4, 5\}$$
 $C_1 = \{9, 3, 2, 1\} ----> C_2 = \{2, 1, 9, 3\}$
 $C_1 = \{-1, 11, 6\} ----> C_2 = \{4, -1, 11\}$

Esercizio 8) Eseguire sulla coda assegnata

$$C_{inizio} = \{-5, 12, 9, 4\}$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che C_1 , C_2 , C_3 e C_4 indicano le code via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la coda finale ottenuta (indicata con C_{fine}).

- 1. Inserisci (Cinizio, 7)
- 2. Inserisci (C₁, **-1**)
- 3. Estrai (C₂)
- 4. Inserisci (C₃, **11**)
- 5. Estrai (C₄)

Esercizio 9) Scrivere la sequenza ordinata $\underline{\text{minima}}$ di operazioni da effettuare per ottenere le seguenti code C_1 e C_2 assegnate nella seguente notazione alternativa:

Esercizio 10) Eseguire il passaggio dalle code C₁ alle code C₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$C_1 = \{r, o, m, a\} ----> C_2 = \{p, r, o, m\}$$

 $C_1 = \{o, r, i\} ----> C_2 = \{r, i, o\}$
 $C_1 = \{m, i, r, a\} ----> C_2 = \{a, m, i\}$

Esercizio 11) Eseguire sulla coda assegnata

$$C_{inizio} = \{c, a, v, o\}$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che C_1 , C_2 , C_3 e C_4 indicano le code via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la coda finale ottenuta (indicata con C_{fine}).

- 1. Inserisci (Cinizio, i)
- 2. Inserisci (C₁, **m**)
- 3. Estrai (C2)
- 4. Inserisci (C₃, **a**)
- 5. Estrai (C₄)

Esercizio 12) Scrivere la sequenza ordinata minima di operazioni da effettuare per ottenere le seguenti code **C**₁ e **C**₂ assegnate nella seguente notazione alternativa:

Esercizio 13) Eseguire il passaggio dalle code C₁ alle code C₂ assegnate sotto indicate utilizzando il minor numero di operazioni possibile:

$$C_1 = \{c, a, n, e\} ----> C_2 = \{b, a, r, c, a\}$$

 $C_1 = \{v, i, a\} ----> C_2 = \{a, v, i\}$
 $C_1 = \{l, i, r, a\} ----> C_2 = \{a, l, i\}$

Esercizio 14) Eseguire sulla coda assegnata

$$C_{inizio} = \{c, o, s, a\}$$

le operazioni sottoindicate <u>una dopo l'altra</u> tenendo presente che C_1 , C_2 , C_3 , C_4 e C_5 indicano le code via via ottenute applicando le operazioni sottoindicate una dopo l'altra e dire quale sarà la coda finale ottenuta (indicata con C_{fine}).

- 1. Inserisci (Cinizio, C)
- 2. Inserisci (C₁, u)
- 3. Inserisci (C₂, s)
- 4. Estrai (C₃)
- 5. Inserisci (C₄, **a**)
- 6. Estrai (C₅)